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Norms

lylle = V{2 + w2+ .. + [yl

[Allz = max [|Ay[l>  2-norm
Iyll=1
m n

|AIE = Y 3 lai;/*  Frobenius norm
i=1j=1

|A|l = either [[Af|> or [|A]lr



Classical Tensor Notation

e tOO many indices

e tOO many summations

e Mmultiplications can be tedious

e can be clumsy

e far away from matrix notation



A 3D Array

a 3D array can be sliced

each slice is a matrix (2D array)

each matrix = a set of data

each matrix = a cross-section of data

each matrix = an image



Slicing an m x n X p Array ©

U* —

e ©(:,.,k) slicesk=1:p

e U* is applied to all (np) columns

e V is applied to all (mp) rows

e U™ V multiplications are well defined

e Mmultiplications by matrix inverses are well
defined



Slicing an m xn X p Array ©

%%
l m=n=2, p=3
- P

e ©(:,4,:) slices j=1:n
e U™ is applied to all (pn) columns

e W is applied to all (mn) rows



Slicing an m xn X p Array ©

V

/
W 4477 m=n=2, p=3
—

e (i,:,:) slicesi=1:m
e W* is applied to all (mn) columns

e V is applied to all (mp) rows



Tensor Product ¢

A be a matrix
w be a vector

Define a tensor (3D array)

[=wo A
qualified by
Yijk — QW

Alternatively,

Yijk = bjgv; , ' =voB

Yijk = Cjkui , [ =uoC



Vectorizing Operator v
Kronecker product: ®

woA
v3{l} = w®uva{A}
vy H{w ® va{A}}

—|
|

—|
|

One tensor product — class 1

v{.} conserves all elements of {.}

Nno information loss

rearranged outer product

inverse of v is well defined

an operator denoted by a single letter
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Flattening Operator b

[ = woA
{lr = we I/{A}t
= b Yw e v{A})

—|
|

e b conserves all elements of I

e NO information loss

e inverse of b is well defined
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Tensor versus Kronecker

® creates vectors out of vectors

® creates matrices out of vectors

® creates matrices out of matrices

& Creates new dimensions
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An Example

a a _ w1 |
A:[all a12] Cow=| ws
21 22 _ w3 _
T = woA
Yijk = QijWg

Cross-sections wrt to the third dimension
r(:;,:;,1) = wiA

(5 2)
(:,:,3) = w3A

wo A

These are the natural cross-sections
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Example Continued

(M) = | wo

_wl_

| W3 ]

ajl az2i1 ai2 a22]

e (M) is a tall vector

e H(IN) is a rank-1 matrix
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Cross-sections wrt
Dimension

R wian] wWani

a
_ 11 | ot
| a21

R w1a22 WA

a
_ 12 | ot
| a22

Second

w3ail
w3az1

w3al2
w3an?2

e 7111 on the top left of I'(:,1,:)

e reduced ranks in these cross-sections
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Cross-sections wrt First

Dimension

T wialp weain

a
_ 11 | &t
| a12

T w1a22 wW2an2

a
_ 21 | ot
| a22

e v111 on the top left of (1,

w3aiil
w3ai2

w3az]
w3a22

o)

e reduced ranks in these cross-sections
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Cross-sections

implementation dependent

we follow MATLAB and Fortran

trivially different from De Lathauwer
et al (2000)

(1,1,1) element at the top left
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Flattening with a Template

Arbitrary © € C™MXnXp
Template T € CMXnXp

-
'}

wo A
W@At

Using the same element mapping rules

H{O)
p—H{F}

F
S
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An Example

{M}=w|a11 a1 a1p axo

[ 0111 0211 0121 6221 |
p{O} = | 0112 6212 0120 0200
| 0113 0213 0123 0223 |




Another 3D Class

a, b and ¢ be vectors

We can define

T =aoboc

where

Yijk = abjcy.

Two tensor products — class 2

[ is rank 1
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The Two 3D Classes

e Class 1 — Tucker/multilinear type model

e Class 2 — parafac/candecomp type model

Tucker (1966)
multilinear: De Lathauwer et al (2000)

parafac: Harshman (1970)
candecomp: Carroll and Chang (1970)
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Orthogonal Vectors

U = .. u™] =1
v = v v vty =1
w = [ w®] | wrw =1

In general, U, V and W are unitary
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Three Linear Models for
the Same Array

e CMmXnXxp

k=1

n

j=1

NOWO

j
|
it

e tensor summations

e Reminds one-sided Jacobi algorithms

22



Tensor from Core

The core array > € C™MXnXp

_I
=
|
2/\
&
&
™
a
VP?‘
N—’

e tensor multiplications in any order

e Can be extended to 4D and higher
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Core from Tensor

Let W be the columns of W—1 = Ww*

p

1 = Zv“v(k)ol_(:,:,l-c)
k=1

o = Z{;(j)orl(:aja:)
J=1

> = Zﬁ@org(z’,:,:)
i=1

e tensor multiplications in any order
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Core Orthogonality

sum{>(i1,:,:) o X(i2,:,1)} = @184,

sum{>(:,j1,:) 0 (i, 42,:)} = 205y j

sum{X(:,5,k1) o X(:, 5, k2)} = a3k,

Hadamard (Schur) product o
Element by element product o
Kronecker delta 9;;
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Core Orthogonality
without o

v{Z (i1, )Y v{x(2,5)} = @164,

A1, D) {52, D))

205, j,

A L) P AZC L R2) = aslpgg,
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Core Orthogonality

Core in matrix SVD is diagonal
Tucker model core is NOT diagonal

Columns (rows) of matrix core are or-
thogonal

Tucker model core slices are orthogonal
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Tucker Model: Questions

Matrix SVD is optimal
Is Tucker model optimal 7

Explain core orthogonality
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Best Rank One
Approximation

Eckart-Young-Mirsky Problem

. X
min | F — 2y’

X

y

a
(o/a)y

e ¢ first left singular vector of F

e ¢ first right singular vector of F

e o first singular value of F

e (= 1) arbitrary positive value

e Similarly, the second best approximation
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Best Rank k£ Approximation

Eckart-Young-Mirsky Problem

min [|FF — XY™
X,Y
x(1) = )
y() = 5D
X = [X(l), . ,X(k)]
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Tucker Model Algorithm

Arbitrary @ € CXxnxp
Template I =wo A

F =b5{0}
Find w,A by min||F —wv(A)}
number of solutions = p
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Core Orthogonality

Due to the orthogonality of

A(k); , k=1:p
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Tucker Singular values

e singular values of F' for each template

e three possible templates in 3D
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Complete Orthogonal
Parafac

This is a decomposition

Not a model

Could be the SVD in 3D
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Largest Singular Value of a
Matrix

o = ||A|lp primary definition

max x' Ay
[xllo=[lyll2=1

9
|

max ylA*Ay
lyll2=1
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Largest Singular Value of a
3D Array ?

xelCm, yelC',ze(CP

p

max S ux'e, L, k)y
[xll2=llyll2=lzll2=1 ;. =

03D

m n p

= max > > D biikriyizk

Ixll2=lyll2=lzl2=1 ;=7 ;=7 g=1

This is a reasonable secondary definition

see Zhang and Golub (2001)

What is the primary definition ?
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Sets of Matrices

B = {By,Bo,...Bp}

aA

{aA1,aAs,...aAp}

A+ B

{A1+ B1,Ao + Bo,... Ap + Bp}
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A Norm for a Set of
Matrices

Define the function u,

p(A) = max || Z 2 Agll2
lzll2=1" ;=

Then

p(aA) | (A)

p(A+B) < pu(A)+ p(B)

Thus, u(.) is a norm induced by the 2-norm
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A Norm for a 3D Array

Can be defined via the slices

w(©) = max | Z 2,9, 5 k)2
|z|l2=1 —

= max || Zyk@( ,Jy )2
lyllo=1

= max || Zxk@(% 5 )l
Ixl>=1" /=

™m n P
= max Y Y > Oijkriy;zy

39



A Bound for the Norm

p
n(®) < J Z [[SIGANDI[E

n(©) < Z 19,4, )15

u(©) < J S leG, )5
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Invariant Property

=
P

p
w) s o, k)) = uw(©®)

k=1

u(ivU)oe(:,j,:)) = u(©)
=1

" (Z u<i><>e(7;,:,:)) = u(©)
1=1

where U, V and W are unitary
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Three Subproblems

P

p(©) = max || 3 zO(, k)2
lzllo=1" ;=

e ucce <« © and z are complex (generic)
® ure <« O is real and z is complex

e urr <« © and z are real
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A Surprising Result

prr(©) < prc(©)

T he following statements are wrong

e Without loss of generality we assume that
the array is real

e [ his can be easily extended to the com-
plex case
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An Algorithm for the
Largest Singular Value

@ = CmeXm

Use permutations to make |0111| the largest
(permutation matrices are unitary)

[U,S, V] = svd(©(:,:,1))
Apply U* and V to ©

U, S,W] = svd(O(:,1,:))
Apply U* and W to ©

(W, S, V] = svd(©(1,:,:))
Apply W* and V to ©

Repeat above until convergence
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convergence

Element 6111 does not increase
The three edges

©(1,1,:)

©(1,:,1)

o(:,1,1)

are zero except for the element 67114
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An Algorithm for the
Second Singular Value

Use permutations to make |0y55| the largest
without disturbing 6111

[U,S,V] = svd(©(2:m,2:m,2))
Apply U* and V to ©

[U, S, W] = svd(©®(2:m,2,2:m))
Apply U* and W to ©

W, S, V] = svd(©(2,2:m,2:m))
Apply W* and V to ©

Repeat above until convergence
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convergence

Element 655> does not increase
The three edges

©(2,2,3:m)

©(2,3:m,2)

©(3:m,2,2)

are zZero
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The 3D SVD

For © g cmxmxm

e = y:yjy:wi,j’ku(i) <>V(j) OW(k)
1 7k

where

7q,9,9
for ¢q=1:m are the 'singular values’

The edges:

Tg+1:m,q,qg — O
Tg.q+1:m,qg = O
Tq.q.q+1m = 0

forg=1:m-1
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Main Properties

m(1,7,k)
m(i, 1, k)

(i, 4, 1)

T1,1,1

AVAR VARV,
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Main Properties

o{lM(1,2:m,2:m)}
o{lM(2:m,1,2:m)}
o{lM(2:m,2:m,1)}

T1,1,1

AVARAVARAVS
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T 2.2

Peel off the first layer

Use properties of 71 1 1
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Monotonicity

71,11 27222 2 3332 ...
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Orthogonal Rank ?

Number of non-zero mgq.q
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Conclusions: Tucker Model

e 3D Tucker is based on 3 SVDs

e JTucker model is optimal

e [ hree ways to express the same model

e Eckart-Young-Mirsky (EYM) in 3 ways

e Core orthogonality due to EYM

e only one tensor (outer) product

e one-sided Jacobi expansions
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Conclusions: 3D Norm

A norm induced by the vector 2-norm

Compatible with Zhang-Golub

Computable bounds for the norm

Generic problem is complex
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Conclusions: 3D SVvD

Based recursively on the 3D norm

Complete orthogonal parafac

Two tensor products

Edges are zero

Diagonals give 'ordered singular values

Off-diagonals give 'sub-singular values’
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Conclusions: Tensor Classes

e luckeris class 1

e 3D parafac is class 2

e \/ector spaces are vectors, matrices 3D
arrays etc

e [ensors are products of vector spaces
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